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20 The ability to track multiple moving objects with attention has been the focus of much research. However, the literature is
21 relatively inconclusive regarding two key aspects of this ability, (1) whether the distribution of attention among the tracked
22 targets is fixed during a period of tracking or is dynamically adjusted, and (2) whether motion information (direction and/or
23 speed) is used to anticipate target locations even when velocities constantly change due to inter-object collisions. These
24 questions were addressed by analyzing target-localization errors. Targets in crowded situations (i.e., those in danger of
25 being lost) were localized more precisely than were uncrowded targets. Furthermore, the response vector (pointing from the
26 target location to the reported location) was tuned to the direction of target motion, and observers with stronger direction
27 tuning localized targets more precisely. Overall, our results provide evidence that multiple-object tracking mechanisms
28 dynamically adjust the spatial distribution of attention in a demand-based manner (allocating more resources to targets in
29 crowded situations) and utilize motion information (especially direction information) to anticipate target locations.
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34

35
36 Introduction

37 The ability to track multiple moving objects (multiple-
38 object tracking) is crucial in daily life. For example, while
39 driving a car, one may need to simultaneously keep track
40 of a running dog and child who might suddenly dash into
41 traffic, a nearby car that might unexpectedly swerve, and
42 oncoming traffic that might suddenly turn. Several
43 hypotheses have been proposed to explain the mechanisms
44 underlying this ability. For example, the visual system
45 might use multiple “attention indices1” that can be
46 assigned to a limited number of to-be-tracked objects
47 (for reviews, see Cavanagh & Alvarez, 2005; Pylyshyn,
48 2001; Scholl, 2001). Although the prevalent explanations
49 of multiple-object tracking have postulated the involve-
50 ment of up to five discrete attention indices, a recent study
51 has suggested that there may be a trade-off between the
52 number of attention indices deployed and the spatial
53 resolution of each attention index (Alvarez & Franconeri,
54 2007). For example, the visual system might deploy many

55low-resolution indices or a few high-resolution indices,
56being constrained by resource limits rather than by a strict
57number limit. Alternatively, the visual system might
58rapidly shift a single focus of attention among tracked
59objects to continually update their locations (e.g., Oksama
60& Hyönä, 2008). The visual system might also utilize
61global-pattern processing to track multiple objects as a
62coherent group, such as tracking target objects as vertices
63of a deforming polygon (e.g., Yantis, 1992). It is possible
64that multiple-object tracking is mediated by some combi-
65nation of these mechanisms.
66We used a novel experimental paradigm to address two
67fundamental questions that were not decisively answered
68in previous research regarding how the targets are tracked
69during multiple-object tracking. Answers to these ques-
70tions will provide important constraints on current models
71of multiple-object tracking. The first question is whether
72multiple-object tracking mechanisms dynamically adapt to
73changing demands. Specifically, we investigated whether
74attention resources (e.g., spatial resolution of attention
75indices or frequency of attentional fixation) were shifted
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76 on-line from targets in uncrowded situations (where low
77 spatial resolution or infrequent attentional fixations would
78 be sufficient to track targets) to targets in crowded
79 situations (where high spatial resolution or frequent
80 attentional fixations would be necessary to avoid losing a
81 target).
82 The second question is whether multiple-object tracking
83 mechanisms monitor the velocities (as well as the loca-
84 tions) of tracked objects. It is clear that motion information
85 is utilized (and pursuit eye-movements are engaged) when
86 only one object is tracked and the trajectory of its motion is
87 relatively constant (e.g., when playing tennis). In fact,
88 many studies have provided evidence suggesting that the
89 visual system utilizes motion information to anticipate
90 target locations when one or two targets are tracked and
91 the target velocities are constant, nearly constant, or
92 predictably varied (e.g., Fencsik, Klieger, & Horowitz,
93 2007; Müsseler, Stork, & Kerzel, 2002; Verfaillie &
94 d’Ydewalle, 1991; for a review, see Thornton & Hubbard,
95 2002). The question we addressed was whether multiple-
96 object tracking mechanisms could utilize motion (direction
97 and/or speed) information even when multiple targets were
98 simultaneously tracked, the trajectories of the tracked
99 targets intermingled with those of multiple moving dis-
100 tractors, and when the velocities of the targets frequently
101 changed due to inter-object collisions.
102 These questions are difficult to investigate using the
103 conventional multiple-object tracking paradigm where
104 performance is measured in terms of the number of
105 objects that are successfully tracked. Instead, we meas-
106 ured the precision of tracking of individual objects. Our
107 observers tracked three initially flashed target circles
108 moving among seven distractor circles as in a typical
109 multiple-object tracking task. The three targets, however,
110 were labeled with distinct colors, red, green, and yellow
111 (see Figure 1). Because the distractors shared these colors,
112 the colors did not distinguish the targets from distractors,
113 and thus targets had to be attentionally tracked. At the end
114 of a tracking period (6 sec in Experiment 1 and variable in
115 Experiment 2) all circles disappeared, simultaneously with
116 the auditory presentation of a color name. Observers were
117 instructed to precisely indicate with a mouse-click the
118 last-known location of the tracked target of the named
119 color. Because observers did not know in advance which
120 of the three targets would be cued to be localized, they
121 had to track all three targets. We were thus able to
122 measure the localization error (the distance from the final
123 location of the target to the location of the mouse-click)
124 for a randomly selected target while observers tracked all
125 three targets (see the Methods section). This procedure
126 allowed us to evaluate the dynamic distribution of
127 attention resources and the use of motion information
128 during multiple-object tracking.
129 Regarding the distribution of attention resources, if
130 more resources were dynamically allocated to targets in
131 crowded situations, target-localization error should be
132 inversely related to the degree of crowding (measured as

133the distance from the target to its nearest distractor) at the
134time of the display offset. We thus predicted that if the
135cued target happened to be relatively far from its nearest
136distractor, multiple-object tracking mechanisms would
137have allocated a relatively small amount of attention
138resources (e.g., a low-resolution attention index or non-
139prioritized allocation of attention), so that it should be
140localized with a relatively large error. In contrast, if the
141cued target happened to be close to a distractor, multiple-
142object tracking mechanisms would have allocated a
143relatively large amount of attention resources (e.g., a
144high-resolution attention index or prioritized allocation of
145attention), so that it should be localized with a relatively
146small error.
147Regarding the use of motion information, in order to
148intercept a moving target, one must aim ahead of the
149current location of the target along its motion trajectory.
150We thus hypothesized that if the targets’ motion directions
151were monitored during multiple-object tracking, observers
152would systematically mouse-click ahead of the target’s
153actual location at the time of its disappearance along its
154motion trajectory; that is, the response vector (pointing
155from the location of the target disappearance to the
156location of the mouse-click) should be directionally tuned
157to the target’s motion. In addition, if the targets’ speeds
158were also monitored during multiple-object tracking, the
159amplitudes of forward-location clicking should be pos-
160itively correlated with the target’s speed. Finally, if
161motion direction and/or speed were not merely monitored
162but were actually utilized by multiple-object tracking
163mechanisms, stronger direction tuning (indicative of more
164reliable encoding of motion direction) and/or stronger

Figure 1. The rectangular tracking region contained ten colored
circles that moved independently, bouncing off of one another and
the border walls. The three to-be-tracked circles (labeled “T” here)
were assigned different colors. The target labels and the arrows
were not present in the actual display.
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165 correlation between the target’s speed and the amplitude
166 of forward-location clicking (indicative of more reliable
167 encoding of speed) should be associated with more precise
168 target localization.
169

170
171 Method for Experiment 1

172 Observers

173 Twenty undergraduate students at Northwestern Uni-
174 versity gave informed consent to participate for partial
175 course credit. They all had normal or corrected-to-normal
176 visual acuity and normal color vision and were tested
177 individually in a dimly lit room.
178

179 Stimuli

180 The tracking display contained ten moving circles
181 (diameter = 0.69-), including the three targets and seven
182 distractors. The moving circles were confined within an
183 11.8- (horizontal) by 8.9- (vertical) rectangular region.
184 The circles were colored red (CIE = [.623, .347], 19.7 cd/
185 m2), green (CIE = [.295, .588], 20.6 cd/m2), and yellow
186 (CIE = [.402, .443], 66.3 cd/m2) and were presented
187 against a black (0.14 cd/m2) background. Each of the three
188 targets had a different color, while the distractors were
189 assigned one of the three colors with the constraint that at
190 least two distractors had the same color as each target. All
191 circles initially moved at the same speed (2.43-/sec), but
192 their initial locations and motion directions were ran-
193 domly determined on each trial. Vertical and horizontal
194 directions were not used as initial directions because
195 motions in these cardinal directions are salient. The circles
196 bounced against one another and against the walls of the
197 rectangular tracking region according to the principle of
198 perfect elastic collision (i.e., conserving both momentum
199 and kinetic energy). Both motion directions and speeds
200 frequently changed due to collisions. At the end of the
201 tracking period, the speeds of the circles had a unimodal
202 distribution with a range of 0.12–6.15-/sec.2

203 The stimuli were displayed on a color CRT monitor
204 (1024 � 768) at 75 Hz, and the experiment was controlled
205 by a Macintosh PowerPC 8600 using Vision Shell
206 software (micro ML, Inc.). A chin rest was used to
207 stabilize the viewing distance at 68 cm.
208

209 Procedure

210 Observers initiated each trial with a button press. The
211 three to-be-tracked targets initially flashed for 1.8 sec.
212 Observers maintained eye fixation at a central cross (0.51-
213 by 0.51-, 31.4 cd/m2) while attentionally tracking the
214 three target circles for the remaining 4.2 sec. To ensure

215central eye fixation, a small digit (0.17- by 0.42-)
216randomly selected between 0 and 9 (inclusive) was flashed
217for 134 ms replacing the fixation cross at a randomly
218chosen time on each trial (between 1.6 and 4.6 sec from
219the trial beginning), and the observer verbally reported the
220digit when it appeared. The few trials (1.4%) in which the
221digit was not correctly reported were excluded from the
222analyses. Although central eye fixation was not required in
223most prior studies of multiple-object tracking, we
224enforced it here so that we could measure distributions
225of attention during tracking without potential confounds
226from eye movements.
227Following the 6-sec tracking period, the display turned
228blank (except for the central fixation cross), simultane-
229ously with an auditory presentation of a color name.
230Observers were instructed to mouse-click the location of
231the target of the indicated color as precisely as possible
232(the initial location of the mouse cursor was at the fixation
233cross). Note that mouse-click responses have been shown
234to be sensitive for revealing encoding of motion informa-
235tion in a localization task, especially for smoothly moving
236stimuli (e.g., Kerzel, 2003a). When observers lost track of
237the target, they were instructed to mouse-click a location
238outside of the rectangular tracking region. The overall
239probability of losing a target was 9.8% (SEM = 1.7%).
240Note that this probability of target loss would have been
241much higher if observers adopted the strategy of tracking
242only one target (with an expected probability of loss =
24367%) or two targets (with an expected probability of loss =
24433%). It might be the case that observers failed to indicate
245that they lost the target when they actually did and instead
246mouse-clicked an arbitrary location. However, this possi-
247bility is unlikely as the target localization was overall
248quite precise for the trials on which observers mouse-
249clicked within the tracking region; the magnitude of
250target-localization errors had a unimodal distribution with
251the mode less than 0.5- and most errors less than 1.0-
252(Figure 2). These results indicate that observers success-
253fully tracked all three targets on most trials. Each observer

Figure 2. The distributions of target-localization errors (for Experi-
ments 1 and 2) for the trials in which observers did not indicate
that they lost the target. Note that most errors were small (less
than 1.0-).
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254 performed four blocks of 20 trials; 5 practice trials were
255 given prior to these experimental trials.
256

257 Data analyses

258 Target-localization error was measured as the vector
259 pointing from the location of the center of the target when
260 it disappeared to the location of the mouse-click.
261 Unusually large errors (beyond the 99th percentile in
262 amplitude) were excluded from the analyses because those
263 most likely represented targets that were lost without the
264 observers’ knowledge.
265 The degree of crowding around each target was
266 measured as the distance from the target to its nearest
267 distractor, Dnearest. The crowding region was truncated
268 near the borders of the tracking display because distractors
269 could not appear outside of the tracking region. Due to
270 this border effect, targets near the edges of the display
271 would of necessity have been relatively uncrowded, and
272 those uncrowded targets may have produced large local-
273 ization errors due to their high eccentricity. To resolve this
274 confound, when we analyzed the effect of crowding on the
275 precision of tracking, we recursively removed high-
276 eccentricity targets from the analyses until the average
277 target eccentricity was equivalent across the targets
278 associated with different ranges of Dnearest.
279
280

281
282Results from Experiment 1

283Demand-based dynamic distribution of
284attention resources

285We first discuss evidence indicating that multiple-object
286tracking mechanisms dynamically allocate attention
287resources to targets in crowded situations where the chance
288of losing the targets increases. We used the distance from
289each target to its nearest distractor (at the time of target
290disappearance), Dnearest, as the measure of crowding, with
291smaller Dnearest values indicating greater crowding. To
292determine how target-localization error depended on
293Dnearest, we plotted average target-localization error as a
294cumulative function of Dnearest (Figure 3A). Each point
295shows the average localization error for the targets
296associated with Dnearest equal to or less than the indicated
297value. An advantage of plotting average localization error
298as a cumulative function of Dnearest is that a continuous
299function could be obtained without dividing Dnearest values
300into artificial bins while preserving the general pattern of
301dependence of target localization on Dnearest (though with
302progressively greater data smoothing for larger values
303of Dnearest). The target-localization error clearly reduced
304for smaller values of Dnearest, with a significant linear
305trend, F(1,19) = 5.762, p G 0.027, )p = 0.233 (all of our

Figure 3. Target-localization error (for Experiments 1 and 2) plotted as a function of the distance between the target and its nearest
distractor, Dnearest. (A) A cumulative plot where each point shows the average localization error for all Dnearest up to the indicated value.
(B) A non-cumulative plot where different values of Dnearest are divided into six intervals, and the average error for each interval of Dnearest

is plotted against the average Dnearest for that interval. The error bars indicate T1 SEM (with observers as the random effect; the variance
due to overall individual differences in localization errors was removed before computing SEM).
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306linear-contrast analyses are based on a conservative
307method using a contrast-specific error term). This indicates
308that the targets were more precisely localized when they
309were more crowded by the distractors. The same effect is
310also apparent in the non-cumulative plot (Figure 3B) in
311which the Dnearest values were divided into six nearly even
312intervals with the constraint that at least five of the six
313intervals included ten or more data points from each
314observer. The linear trend was again significant, F(1, 19) =
3157.807, p G 0.012, )p = 0.291.
316These results are consistent with the idea that greater
317attention resources are dynamically allocated to crowded
318targets. Furthermore, this dynamic demand-based alloca-
319tion of attention did not engage until a distractor closely
320approached a tracked target as localization error did not
321begin to improve until Dnearest became less than È3-
322(Figure 3).
323One might argue that the improved target-localization
324accuracy with close distractors may partially reflect a
325tendency for observers to group targets with their
326proximate distractors. Such target-distractor grouping
327would have been uncommon during the course of tracking
328because such a strategy would increase the chance of
329confusing targets and distractors. Nevertheless, it is still
330possible that at the time of localization the mouse-click
331response might have been attracted to the center of gravity
332between the target and its proximate distractor. We
333evaluated this possibility by plotting all mouse-click
334locations relative to the axis and scale defined by the
335target and its nearest distractor. If observers tended to
336mouse-click the center of gravity between the target and
337its nearest distractor, the mouse-clicks should be clustered
338around the mid point between the target and its nearest
339distractor. In contrast, if observers aimed at the target
340irrespective of the proximate distractor, the mouse-clicks
341should be clustered around the target. The data clearly
342support the latter (Figure 4A).
343Taken together, these results demonstrate that the
344precision of multiple-object tracking increases when a
345distractor moves close to a tracked target (within È3-
346radius), suggesting that multiple-object tracking mecha-
347nisms dynamically and adaptively distribute attention
348resources to targets in more crowded situations where
349more precise tracking is necessary.
350

351

352
353The use of motion information

354To determine whether multiple-object tracking mecha-
355nisms monitor motion direction information, we examined
356the direction tuning of the response vector (which points
357from the location of the target disappearance to the
358location of the mouse-click). For each trial, we computed
359the direction of the response vector relative to the
360direction of the target motion (at the time of its

Figure 4. The spatial distribution of mouse-click locations
(+ symbols) for Experiment 1 (A) and Experiment 2 (B). The
mouse-click locations are normalized with respect to the axis and
scale defined by the target (indicated with a circle), its nearest
distractor (indicated with a triangle), and the distance between
them. The accompanying histograms show the distributions of the
normalized X and Y coordinates of mouse-clicks.
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361 disappearance) in terms of angular deviation. We col-
362 lapsed over the clockwise and counterclockwise devia-
363 tions while averaging across all directions of target
364 motion. The response vector is clearly tuned to the
365 direction of target motion (Figure 5; the mirror reflection
366 of the data has been added as negative errors to aid
367 visualization of the direction tuning). The flanking troughs
368 around T90- indicate that the directions orthogonal to
369 target motions are inhibited by multiple-object tracking
370 mechanisms.
371 To statistically verify this tuning, we computed a
372 direction-tuning index for each observer, defined as,

Directionjtuning index

¼ # of absolute angular deviations between 90: and 180:½ �
# of absolute angular deviations between 0: and 90:½ �:

ð1Þ

373374

375 A value of zero indicates consistent direction tuning
376 (i.e., all response vectors project positively to target-
377 motion vectors), whereas a value of 1 would indicate no
378 direction tuning (i.e., response vectors project positively
379 and negatively to target-motion vectors with equal

380probability). The mean direction-tuning index for the
38120 observers was significantly below 1 (see Figure 6 for
382the distribution), verifying that observers tended to click
383ahead along the target’s anticipated motion trajectory;
384t(19) = 3.424, p G 0.003, d = 0.766 (the ratio-based
385direction-tuning indices were log-transformed prior to
386t-test). This provides evidence that the directions of targets’
387motions were monitored during multiple-object tracking.
388Successful monitoring of motion direction information,
389however, does not necessarily mean that it contributes to
390tracking performance. If multiple-object tracking mecha-
391nisms utilize motion-direction information to increase the
392precision of tracking, smaller direction-tuning indices
393(indicative of stronger direction tuning) should be asso-
394ciated with smaller localization errors. This was indeed
395the case (Figure 6), r = 0.521, t(18) = 2.591, p G 0.02.
396We next examined whether the targets’ speeds (in
397addition to directions) were monitored during multiple-
398object tracking. If speeds were monitored, anticipatory
399forward shifting of mouse-clicks should be greater when
400targets were moving faster. To evaluate this relationship, we
401quantified the amplitude of forward shifting of the mouse-
402click as the scalar product between the response vector and
403the unit vector along the target’s motion direction; a larger
404positive value would indicate a greater forward shift, a zero
405would indicate no shift, and a larger negative value would
406indicate a greater backward shift. We then computed the
407linear correlation between this measure of forward shift and
408the target speed for each observer (outliers outside the 95%

Figure 5. The direction tuning of multiple-object tracking (for
Experiments 1 and 2). The distribution of the directions of
response vectors (pointing from the target locations to the
mouse-click locations) is plotted relative to the direction of target
motion (shown as 0-).

Figure 6. A scatter plot showing the correlation between the
direction-tuning index (smaller values indicating stronger direction
tuning) and average target-localization error, for Experiments 1
and 2. Each point represents one observer. The solid and dashed
lines indicate the linear fits for Experiments 1 and 2, respectively.
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409 confidence ellipse were eliminated before computing each
410 correlation). A larger positive value of the correlation
411 coefficient, rspeed, would indicate a more consistent linear
412 relationship between the target’s speed and the amplitude
413 of the forward shift of the mouse-click, implying more
414 reliable monitoring of the targets’ speeds. Thus, rspeed
415 provided an index of speed monitoring.
416 Although rspeed was small (M = 0.115 with SEM =
417 0.025), it was significantly larger than zero, t(19) = 4.600,
418 p G 0.0002, d = 1.029, suggesting that the targets’ speeds
419 (in addition to directions) were monitored during multi-
420 ple-object tracking. The speed monitoring index, rspeed,
421 was uncorrelated with the direction-tuning index (r2 =
422 0.002), suggesting that the targets’ speeds and directions
423 are monitored as separate parameters during tracking.
424 Although the direction-tuning index was strongly corre-
425 lated with the precision of target localization (Figure 6),
426 the speed-monitoring index, rspeed, was not (r

2 = 0.000 for
427 rspeed-vs.-localization-error correlation), suggesting that
428 speed information (though monitored) does not substan-
429 tially contribute to multiple-object tracking. This lack of
430 correlation cannot be due to the possibility that the speed-
431 related forward mouse-clicking substantially contributed
432 as localization errors and canceled out the beneficial effect
433 of speed monitoring. The rspeed-vs.-localization-error
434 correlation was still insignificant (r2 = 0.020) even when
435 we removed the systematic speed-related forward shifting
436 of mouse-clicks (explained by the regression lines) from
437 each response vector prior to computing the correlation.
438 We also note that the amplitude of the speed-related
439 forward shifting was overall very small (i.e., the mean
440 regression slope for the speed-vs.-forward-shifting corre-
441 lation was 0.074- shift per degrees/sec, indicating that
442 forward shifting increased by only 0.074- per 1-/sec
443 increase in target speed); thus forward shifting minimally
444 contributed to target-localization errors. A null result on
445 the usefulness of speed information, however, must be
446 interpreted with caution. For example, it is possible that,
447 although rspeed was an adequate measure to demonstrate
448 that speed information was monitored during multiple-
449 object tracking, it might not have been a sensitive enough
450 measure of the “goodness of speed monitoring” to reveal
451 the contributions of speed information to the precision of
452 target localization. Nevertheless, we have provided clear
453 evidence that (1) the targets’ velocities (i.e., both
454 directions and speeds) are monitored during multiple-
455 object tracking, and that (2) at least the motion direction
456 information substantially contributes to the precision of
457 multiple-object tracking.
458 There were several methodological concerns about the
459 design of Experiment 1. First, the trial duration was always
460 6 sec, so that observers could have potentially adopted the
461 strategy of only loosely tracking the targets most of the
462 time and focusing attention on the targets only at the end of
463 each trial when they had to report the location of one of the
464 targets. If this were the case, our results would not imply
465 that attention resources are dynamically shifted to crowded

466targets in the course of continuous tracking. To address
467this concern, in Experiment 2 we randomly varied the trial
468duration so that observers did not know when they had to
469localize a target. A second concern regarded the method
470we used to ensure central eye fixation. Although the
471unpredictably flashed probe digits were identified with
472high accuracy (only 1.4% errors), we cannot definitively
473rule out eye movements as a factor. Enforcing central eye
474fixation is crucial in our paradigm so that more precise
475target localization in crowded situations can be attributable
476to demand-based allocations of attention resources rather
477than to eye movements. A third concern was that our
478results could be specific to the situation where observers
479perform a concurrent secondary task. In Experiment 2, we
480thus eliminated the secondary fixation task and monitored
481eye movements using an eye tracker to ensure central
482fixation. Finally, because our paradigm is novel, it was
483important to replicate our original results.

484

485
486Method for Experiment 2

487Observers

488Thirty-six undergraduate students at Northwestern Uni-
489versity gave informed consent to participate for partial
490course credit. They all had normal or corrected-to-normal
491visual acuity and normal color vision and were tested
492individually in a dimly lit room. Thirteen of them did not
493complete the experiment because they were unable to
494maintain central eye fixation on most trials. This may
495indicate that it is difficult to maintain central eye fixation
496during multiple-object tracking without a concurrent
497fixation task, or that many observers in Experiment 1
498actually made numerous eye movements. Nevertheless, as
499shown below, we replicated all of the primary results from
500Experiment 1 with strict enforcement of central eye
501fixation, suggesting that our primary results are applicable
502whether or not central eye fixation is strictly maintained.
503Of the 23 observers who completed the experiment, the
504data from one observer was removed from the analyses
505because of a relatively large number of eye movements
506(greater than 2.5 SD from the group mean). The remaining
50722 observers maintained central eye fixation within 1-
508from the center on 93.8% of the trials (SD = 4.3%), and
509the few trials in which their fixation deviated more than 1-
510were removed from the analyses. Eye movements were
511monitored using an EyeLink 1000 eye tracker (SR
512research, with 0.15- resolution).
513

514Stimuli

515These were the same as in Experiment 1 except that no
516digits were flashed at the center, and the trial duration was
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517 randomly varied between 4 sec and 8 sec (matched to
518 Experiment 1 in terms of the mean duration of 6 sec); 80
519 evenly spaced durations were generated within this
520 range, and those durations were randomly assigned to
521 the 80 trials for each observer.
522

523 Procedure and data analyses

524 These were the same as in Experiment 1, except that
525 observers did not perform the secondary task of digit
526 identification.
527

528

529
530 Results from Experiment 2

531 The proportion of target loss 3.0% (SEM = 0.6%) in
532 this experiment was significantly reduced compared to
533 9.8% (SEM = 1.7%) in Experiment 1, t(40) = 3.891,
534 p G 0.00037, d = 1.20. This improvement is not surprising
535 because observers in this experiment did not perform the
536 concurrent secondary task of digit identification.
537 As shown in Figures 2, 3, 4, 5, and 6, we replicated all
538 of the primary results from Experiment 1, while we
539 randomly varied trial duration, eliminated the secondary
540 task, and enforced central eye fixation. The overall
541 distribution of target-localization error was nearly identi-
542 cal in the two experiments (Figure 2). Importantly, the
543 target-localization error clearly reduced as the distance to
544 the nearest distractor, Dnearest, diminished, with significant
545 linear trends obtained for both the cumulative analysis
546 (Figure 3A), F(1,21) = 13.687, p G 0.0013, )p = 0.395,
547 and the non-cumulative (binned) analysis (Figure 3B),
548 F(1,21) = 13.392, p G 0.0015, )p = 0.389. Note that the
549 dependence of target-localization error on Dnearest was
550 similar (Figure 3) and statistically indistinguishable
551 between the two experiments, with all relevant F’s
552 (involving experiment as a factor) being less than 1. The
553 normalized spatial distribution of mouse-clicks was also
554 similar for the two experiments (Figure 4).
555 With regard to the use of motion information, observers
556 in Experiment 2 also tended to click slightly ahead in the
557 direction of the target’s motion, yielding a direction tuning
558 similar to that obtained in Experiment 1 (Figure 5). The
559 only difference was that the overall mean direction-tuning
560 index was not as robustly less than 1 in this experiment,
561 t(21) = 2.020, p G 0.056, d = 0.463. This occurred because
562 a few observers yielded direction-tuning indices that were
563 relatively substantially deviated from 1 in the positive
564 direction (indicative of backward clicking), but note that
565 those observers were also poor at localizing targets (see
566 open circles in Figure 6). Importantly, greater direction
567 tuning (i.e., a smaller value of the direction-tuning index
568 indicating a greater tendency for forward clicking) was
569 strongly associated with more precise target localization

570(i.e., a smaller value of target-localization error), r =
5710.630, t(20) = 3.632, p G 0.0017, replicating Experiment 1
572with a larger effect size. Thus, anticipating the targets’
573locations based on their motions increases the precision of
574multiple-object tracking, whereas the precision suffers
575when tracking mechanisms fail to anticipate or fall
576behind. This confirms that motion direction information
577is utilized by multiple-object tracking mechanisms to
578increase the precision of target tracking.
579The correlation between the amount of forward shifting
580of mouse-clicks and target speed, rspeed, was small (M =
5810.052 with SEM = 0.024) but significant, t(22) = 2.167,
582p G 0.042, d = 0.462. This replicates Experiment 1 and
583confirms that target speeds (as well as directions) were
584encoded during multiple-object tracking. Furthermore,
585observers who tended to encode targets’ speeds with
586greater reliability (i.e., those with larger positive values of
587rspeed) tended to localize targets more precisely, as
588reflected in the significant negative correlation between
589rspeed and target-localization error, r = j0.41, t(20) =
5902.115, p G 0.048. Note that this correlation was not
591significant in Experiment 1. It is possible that having no
592concurrent secondary task and/or the enforcement of
593central eye fixation in this experiment facilitated the use
594of speed information.
595Finally, as in Experiment 1, the degree to which targets’
596speeds were monitored (measured by rspeed) was not
597significantly correlated with the degree to which targets’
598motion directions were monitored (measured by the
599direction-tuning index), r = j0.27, t(20) = 1.330, n.s.,
600suggesting that the targets’ speeds and directions were
601monitored as separate parameters during multiple-object
602tracking. It is, however, possible that a significant
603correlation might have been obtained had we devised
604more precise measures of how observers monitored the
605speeds and directions of target motion, so that this null
606correlation must be interpreted with caution (although
607both measures were robust enough to reveal significant
608correlations with target-localization error).
609Overall, the combined results from Experiments 1 and 2
610suggest that (1) attention resources are dynamically
611allocated in a demand-based manner, preferentially to
612targets in more crowded situations, and that (2) both
613targets’ motion directions and speeds are monitored
614during multiple-object tracking, with at least the motion
615direction information substantially contributing to the
616precision of target localization.

617

618
619Discussion

620People have the ability to simultaneously track multi-
621ple moving objects with attention and this ability has
622been extensively studied. Using a novel paradigm to
623measure target-localization errors, we investigated two
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624 fundamental questions that were not conclusively
625 addressed in previous research. The first question was
626 how attention is distributed among the tracked targets, and
627 the second question was whether motion information
628 (direction and/or speed) is utilized by multiple-object
629 tracking mechanisms. Our results provide important con-
630 straints for the current models of multiple-object tracking.
631 Broadly, there are two classes of models of multiple-
632 object tracking, one postulating that a fixed number of
633 attention indices are available for assignment to tracked
634 objectsV“multiple-index” models (for reviews, see
635 Cavanagh & Alvarez, 2005; Pylyshyn, 2001; Scholl,
636 2001), and the other postulating that a single focus of
637 attention rapidly switches among the tracked objects to
638 update their changing positionsV“rapid-switching” mod-
639 els (for a review, see Oksama & Hyönä, 2008). Currently
640 no decisive evidence favors either class of models.
641 Our primary finding is that the precision of tracking
642 increases for targets in more crowded situations (measured
643 as reduced localization errors for targets in more crowded
644 situations). For the multiple-index type models, this result
645 would suggest that the spatial resolution of an attention
646 index is increased when its assigned target gets more
647 crowded by distractors. This view is consistent with a
648 recent result, suggesting that the resolutions of attention
649 indices are adjustable under the constraint of limited
650 capacity (Alvarez & Franconeri, 2007); for example,
651 many indices might be deployed with coarse spatial
652 resolution, or a few indices might be deployed with fine
653 spatial resolution. Our result would extend this idea in
654 suggesting that even while tracking a fixed number of
655 objects, the spatial resolutions of attention indices can be
656 adaptively adjusted to provide finer resolutions for targets
657 in more crowded situations.
658 For the rapid-switching type models, our result would
659 suggest that the mechanism that controls the shifting of
660 attention among the tracked targets prioritizes updating of
661 targets in more crowded situations. For either model, our
662 result suggests that increased attention resources (in the
663 form of finer resolution or prioritized updating) are
664 allocated to a target when distractors approach within
665 È3-.
666 Our second major finding is that the motion directions
667 and speeds of the tracked targets are encoded during
668 multiple-object tracking, and that the direction informa-
669 tion contributes to the precision of tracking. For the
670 multiple-index type models, this would suggest that the
671 mechanisms by which attention indices follow the targets
672 utilize motion as well as location information. In the
673 rapid-shifting type models, it is postulated that the targets’
674 locations are temporarily stored in visual short-term
675 memory (VSTM) while other targets are being visited
676 and updated; thus, the major source of tracking error
677 according to these models is the discrepancy between the
678 stored location and the actual location of a target when it
679 is re-visited for updating (e.g., Oksama & Hyönä, 2008).
680 Our result would suggest that this discrepancy is reduced

681by storing the motion (in addition to the location)
682information in VSTM for each target so that the motion
683information can be used to appropriately extrapolate a
684target’s location before shifting attention to it (to
685compensate for its movement while other targets were
686updated). Note that a recent study suggests that multiple-
687object tracking mechanisms utilize brief sensory memory
688(lasting a few hundred milliseconds) of motion trajectories
689(Narasimhan, Tripathy, & Barrett, 2009). Thus, the
690motion and location information used for target updating
691may be extracted from the persisting sensory memory of
692target trajectories without the use of VSTM.
693In summary, any model of multiple-object tracking
694needs to accommodate our two key findings:

6951. attention resources are dynamically and adaptively
696distributed among the tracked targets so that those in
697more crowded situations receive more resources
698than those in less crowded situations, and
6992. motion directions (and perhaps also speeds) of the
700tracked targets are monitored and utilized during
701multiple-object tracking.

702
703

704
705Relation to previous studies

706Many prior studies pertain to our finding on the use of
707motion information during multiple-object tracking. For
708example, a recent study by Howard and Holcombe (2008)
709reported a seemingly opposite result; their observers
710tended to localize a tracked target in its earlier (rather
711than extrapolated) location. As in our study, Howard and
712Holcombe measured target-localization errors, but the
713tracking display they used was somewhat atypical. A
714square-shaped tracking region was divided into eight
715sectors of an equal area with each sector containing only
716one moving item. A subset of these eight items was
717designated as the targets to be tracked. At the end of each
718trial, one of the sectors was cued and observers mouse-
719clicked the last seen location of the target that moved
720about in the cued sector. Because the targets were always
721confined within their respective sectors (which were
722distinct from the sectors that contained the distractors),
723there was no danger of losing a target as long as observers
724remembered the target-containing sectors. Thus, rigorous
725tracking of targets using motion information would not be
726necessary in their task at least for the purpose of not
727losing a target. Their observers therefore might have used
728a less effortful strategy of serially monitoring the target-
729containing sectors. Such a strategy could result in local-
730ization of the target in the cued sector based on its earlier
731location remembered from the most recent attentional visit
732to that sector. In contrast, in typical multiple-object
733tracking tasks (including ours), continuous tracking of all
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734 targets is necessary in order not to lose a target because
735 the trajectories of the targets and distractors closely
736 intermingle. In such a demanding case of tracking,
737 encoding the targets’ motions to anticipate their future
738 locations would be especially useful. We thus consider the
739 seeming discrepancy between Howard and Holcombe’s
740 (2008) results and ours as a reflection of the strategic
741 flexibility of multiple-object tracking mechanisms; a
742 relatively less resource-demanding strategy such as serially
743 monitoring the target-containing regions would be used
744 when such a strategy is sufficient for not losing a target, but
745 all targets are rigorously tracked utilizing most available
746 information (including motion information) when the
747 targets and distractors closely intermingle and the danger
748 of losing a target is high.
749 In general, prior results on target localization are
750 consistent with the interpretation that the visual system
751 anticipates future locations of objects based on motion-
752 based extrapolation. Notably, the extensive literature on
753 the phenomenon known as representational momentum
754 has demonstrated that when a moving object is suddenly
755 extinguished observers tend to locate it ahead of where it
756 actually disappearedVtermed forward displacement, sug-
757 gesting that the visual system tends to anticipate future
758 locations of moving objects based on their motion
759 trajectories (e.g., Freyd & Finke, 1984; Freyd & Johnson,
760 1987; Finke & Shyi, 1988; for a review, see Thornton &
761 Hubbard, 2002). The phenomenon of forward displace-
762 ment has been demonstrated for linear as well as non-
763 linear motion trajectories such as those with periodic
764 changes in direction and/or speed (e.g., Müsseler et al.,
765 2002; Verfaillie & d’Ydewalle, 1991).
766 Broadly speaking, forward displacements have been
767 shown to ubiquitously occur when relatively few items are
768 present (typically one or two) in the display, so long as
769 attention is not strongly captured by a distractor at the
770 time of target localization (e.g., Kerzel, 2003b). Forward
771 displacements, however, had not been examined in the
772 context of multiple-object tracking where multiple mov-
773 ing targets are simultaneously tracked in the presence of
774 multiple moving distractors, the targets’ and distractors’
775 trajectories intermingle, and when the targets’ motions
776 frequently change due to inter-object collisions. We have
777 clearly demonstrated forward-displacement effects in
778 multiple-object tracking, suggesting that the mechanisms
779 underlying the phenomenon of representational momen-
780 tum are also operational during multiple-object tracking.
781 The question of whether motion information is utilized
782 by multiple-object tracking mechanisms was previously
783 investigated, but the results were mixed. For example,
784 tracking performance was unaffected whether or not a
785 temporarily occluded target reappeared at the location
786 predicted by the motion trajectory prior to occlusion.
787 Instead, tracking performance was primarily determined
788 by the distance between the points of target disappearance
789 and reappearance (e.g., Franconeri, Pylyshyn, & Scholl,
790 2006; Keane & Pylyshyn, 2006), suggesting that multiple-

791object tracking mechanisms relied on proximity rather
792than motion. In contrast, a recent study showed that, when
793motion trajectories were nearly constant (except for
794bouncing at the region boundaries) and only one or two
795targets were tracked, re-capturing of tracked targets
796following a 300-ms blank interruption in the tracking
797display was improved by the presence of motion informa-
798tion prior to the interruption (Fencsik et al., 2007).
799Our results strongly support the use of motion informa-
800tion during multiple-object tracking. The consistent for-
801ward displacements of mouse-clicks that were positively
802correlated with the targets’ speeds indicated that the
803targets’ motion directions and speeds were both monitored
804during tracking. The fact that the direction tuning of the
805response vector robustly correlated with target-localization
806error in both Experiments 1 and 2 (and rspeed correlated
807with target-localization error in Experiment 2) suggested
808that multiple-object tracking mechanisms certainly utilize
809motion direction information (but perhaps also speed
810information) to increase the precision of tracking. It is
811possible that this motion-based anticipation of target
812locations operates only within a short range, both in space
813and time, shorter than the spatiotemporal dimensions of
814occluders used in Franconeri et al. (2006) and Keane and
815Pylyshyn (2006), unless targets’ motions are nearly
816constant as in Fencsik et al. (2007).
817Finally, a study investigating how well people detect
818deviant motion trajectories suggests that the magnitude of
819deviation that can be detected depends on how many
820trajectories are simultaneously monitored. It was found
821that the detectable magnitude of angular deviation was
822about T19-, T38-, or T76- when the effective number of
823trajectories tracked by observers was one, two, or four,
824respectively (Tripathy, Narasimhan, & Barrett, 2007). Our
825observers tracked three targets, so the expected degree of
826direction tuning based on Tripathy et al.’s result would be
827somewhere between T38- and T76-. The tuning of the
828response vector we obtained was about T70- (Experiment 1)
829and T45- (Experiment 2) based on the angular deviations at
830half amplitude (measured from peak to trough) of the
831direction-tuning functions shown in Figure 5. Thus, our
832direction-tuning results are broadly consistent with the
833result of Tripathy et al. (2007) despite the fact that the two
834studies used very different experimental paradigms and
835measures.

836

837
838Conclusions

839We used a novel experimental method to measure
840target-localization errors while observers tracked multiple
841targets that independently moved among and collided with
842distractors. Our results provide evidence that multiple-
843object tracking mechanisms (1) dynamically distribute
844attention resources among the tracked targets in a
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845 demand-based manner, preferentially allocating resources
846 to targets in more crowded situations (when distractors
847 approach within È3- of a tracked target), and (2) utilize
848 motion direction (and perhaps also speed) information to
849 anticipate target locations to increase the precision of
850 tracking.
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863
864 Footnotes

865
1
According to Pylyshyn and colleagues’ original theory

866 (e.g., Pylyshyn, 2003; Pylyshyn & Storm, 1988), these
867 indices that follow their assigned targets operate inde-
868 pendently of attention, and they serve as pointers for
869 attention processes to rapidly but serially access the
870 tracked targets. In this sense, their theory is a hybrid
871 between those postulating multiple foci of attention and
872 those postulating rapid switching of a single focus of
873 attention (for reviews of the various models of multiple-
874 object tracking, see Oksama & Hyönä, 2004, 2008, and
875 Cavanagh & Alvarez, 2005).
876

2
This range of speed was somewhat slow compared to

877 typical studies examining multiple-object tracking. In
878 most prior studies, the number of successfully tracked
879 targets was the dependent measure, so that the motion
880 needed to be fast enough for most observers to lose track
881 of at least some of the targets. In contrast, our dependent
882 measure was the precision of tracking, so that the motion
883 needed to be slow enough for most observers to success-
884 fully track all three targets in most trials. Although this
885 might be considered a potential limitation of our techni-
886 que, we argue that the speed range we used is relevant on
887 the basis of ecological and neurophysiological consider-
888 ations. For example, in a typical driving situation (while
889 moving at 35 mi/hr), the stopping distance (under normal
890 road conditions) is about 52 ft. Suppose a driver tracks
891 oncoming traffic (also moving at 35 mi/hr) for potentially
892 dangerous swerves from about twice the stopping dis-
893 tance, 104 (= 52 � 2) ft, to avoid collision. At this
894 distance, the oncoming traffic (assuming a typical 2-lane

895road) would move toward the retinal periphery at È7-/sec
896(assuming the driver is looking forward). The retinal
897speeds of the cars that the driver is following would
898typically be in a slower range. A stationary object such as
899a pedestrian would move toward the periphery at È3.3-/
900sec. If a pedestrian was walking (È2.5 mi/hr) or running
901(È6.3 mi/hr), that would add about T0- to 2-/sec (if
902walking) or T0- to 5-/sec (if running) of retinal speed
903depending on the direction in which the pedestrian is
904moving. As can be seen from this example, the range of
905speeds that we used in our study (0.12–6.15-/sec) covers
906much of this typical range of retinal speeds of objects that
907need to be tracked while driving. Furthermore, the average
908speed tunings of visual neurons in areas V1 and MT are
9094.47-/sec and 7.52-/sec, respectively (Priebe, Cassanello,
910& Lisberger, 2003; Priebe, Lisberger, & Movshon, 2006),
911within or near the range of speeds included in this study.
912The speed range we used is thus representative of normal
913experience on the basis of both ecological and neuro-
914physiological considerations.
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